
Chapter 7

Brownian Motion: Fokker-Planck
Equation

The Fokker-Planck equation is the equation governing the time evolution of the probability
density of the Brownian particla. It is a second order differential equation and is exact
for the case when the noise acting on the Brownian particle is Gaussian white noise. A
general Fokker-Planck equation can be derived from the Chapman-Kolmogorov equation,
but we also like to find the Fokker-Planck equation corresponding to the time dependence
given by a Langevin equation.

The derivation of the Fokker-Planck equation is a two step process. We first derive
the equation of motion for the probability density 4/varrho(x, v, t)4 to find the Brownian
particle in the interval (x, x+dx) and (v, v+dv) at time t for one realization of the random
force ξ(t). We then obtain an equation for

P (x, v, t) = 〈%(x, v, t)〉ξ

i.e. the average of %(x, v, t) over many realizations of the random force. The probability
density P (x, v, t) is the macroscopically observed probability density for the Brownian
particel.

7.1 Probability flow in phase-space

Let us obtain the probability to find the Brownian particle in the interval (x, x+ dx and
(v, v + dv) at time t. We will consider the space of coordiantes x = (x, v). The Brownian
particle is located in the infinitesimal ara dxdv with probablity %(x, v, t)dxdv. The velocity
of the particle at point (x, v) is given by ẋ = (ẋ, v̇) and the current density is ẋ%. Since
the Brownian particle must lie somewhere in the phase-space −∞ < x < ∞,∞< v < ∞
we have the condition ∫ ∞

−∞
dx
∫ ∞
−∞

dv%(x, v, t) = 1

Let us now consider a finite area, or volume, V0 in this space. Since the Brownian particle
cannot be destroyed a change in the probability contained in V0 must be due to a flow of
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probability through the surface S0 surrounding V0. Thus

d
dt

∫ ∫
V0

dxdv%(x, v, t) = −
∫
S0

%(x, v, t)ẋ · dS

We can now use Gauss theorem to change the surface integral into a volume integral.∫ ∫
V0

dxdv
∂

∂t
%(x, v, t) = −

∫ ∫
V0

dxdv∇ · (ẋ%(x, v, t))

Since V0 is fixed and arbitrary we find the continuity equation

∂

∂t
%(x, v, t) = −∇ · (ẋ%(x, v, t)) = − ∂

∂x
(ẋ%(x, v, t))− ∂

∂v
(v̇%(x, v, t)) (7.1)

This is the continuity equation in phase-space which just state that probability is con-
served.

7.2 Probability flow for Brownian particle

In order to write (7.1) explicitly for a Brownian particle we must know the Langevin
equation governing the evolution of the particle. For a particle moving in the presence of
a potnetial V (x) the Langevin equations are

dx
dt

= v

dv
dt

= − γ
m
v +

1
m
F (x) +

1
m
ξ(t) (7.2)

where the force F (x) = −V ′(x). Inserting (7.2) into (7.1) gives

∂

∂t
%(x, v, t) = − ∂

∂x
(v%(x, v, t)) +

γ

m

∂

∂v
(v%(x, v, t))− 1

m
F (x)

∂

∂v
%(x, v, t)

− 1
m
ξ(t)

∂

∂v
%(x, v, t) = −L0%(x, v, t)− L1(t)%(x, v, t)

where the differential operators L0 and L1 are defined as

L0 = v
∂

∂x
− γ

m
− γ

m
v
∂

∂v
+

1
m
F (x)

∂

∂v

L1 =
1
m
ξ(t)

∂

∂v

Since ξ(t) is a stochastic variable the time evolution of % will be different for each realization
of ξ(t). However when we observe an actual Brownian particle we are observing the average
effect of the random force on it. Therefore we introduce an observable probability density
P (x, v, t) = 〈ξ(t)〉ξ.

Let
%(t) = e−L0tσ(t)

then
∂

∂t
σ(x, v, t) = −e−L0tL1(t)e−L0tσ(x, v, t) = −V (t)σ(x, v, t)
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This equation has the formal solution

σ(t) = exp
[
−
∫ t

0
dt′V (t′)

]
σ(0)

which follows since formally

σ(t) = σ(0)−
∫ t

0
dt1V (t1)σ(t1) = σ(0)−

∫ t

0
dt1V (t1)σ(0) +

∫ t

0
dt1
∫ t1

0
dt2V (t1)V (t2)σ(0) + . . .

+ (−1)n
∫ t

0
dt1
∫ t1

0
dt2 · · ·

∫ tn

0
dtn−1V (t1)V (t2) . . . V (tn−1)σ(0) + . . .

=
∞∑
n=0

(−1)n

n!

[∫ t

0
dt1V (t1)

]n
σ(0) = exp

[
−
∫ t

0
dt′V (t′)

]
σ(0)

The third step follows since by changing the order of integration and then varibles∫ t

0
dt1
∫ t1

0
dt2V (t1)V (t2) =

∫ t

0
dt2
∫ t

t2

dt1V (t1)V (t2) =
∫ t

0
dt1
∫ t

t1

dt2V (t1)V (t2)

so that ∫ t

0
dt1
∫ t1

0
dt2V (t1)V (t2) =

1
2

[∫ t

0
dt1V (t1)

]2

Also assume that∫ t

0
dt1
∫ t1

0
dt2 · · ·

∫ tn

0
dtn−1V (t1)V (t2) . . . V (tn−1) =

1
n!

[∫ t

0
dt1V (t1)

]n
(7.3)

then by taking the derivative

d
dt

∫ t

0
dt1
∫ t1

0
dt2 · · ·

∫ tn+1

0
dtnV (t1)V (t2) . . . V (tn)

= V (t)
∫ t

0
dt2
∫ t2

0
dt3 · · ·

∫ tn

0
dtn+1V (t1)V (t2) . . . V (tn)

= V (t)
1
n!

[∫ t

0
dt1V (t1)

]n
=

d
dt

1
(n+ 1)!

[∫ t

0
dt1V (t1)

]n+1

By induction it therefore follows that (7.3) holds. Taking the average 〈· · ·〉ξ over the
Gaussian noice ξ(t) we see that 〈σ(t)〉ξ is the characteristic function of the random variable
X(t) = i

∫ t
0 dt1V (t1). This must again be a Gaussian variable with 〈X(t)〉ξ = 0 and the

variance is

〈X(t)2〉 =
1
2

∫ t

0
dt1
∫ t

0
dt2〈V (t1)V (t2)〉

Since the characteristic function for the Gaussian variableX(t) is exp (iX(t)) = exp
(
iµX − 〈X(t)2〉/2

)
we find

〈σ(t)〉ξ = exp
(

1
2

∫ t

0
dt1
∫ t

0
dt2〈V (t1)V (t2)〉

)
σ(0) (7.4)
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This formula is just a special case of a cumulant expansion. The integral in (7.4) becomes

1
2

∫ t

0
dt1
∫ t

0
dt2〈V (t1)V (t2)〉ξ =

1
2

∫ t

0
dt1
∫ t

0
dt2〈eL0t1 1

m
ξ(t1)

∂

∂v
e−L0t1eL0t2 1

m
ξ(t2)

∂

∂v
e−L0t2〉ξ

=
g

2m2

∫ t

0
dt1eL0t1 ∂

2

∂v2
e−L0t1

Then
∂

∂t
〈σ(x, v, t)〉ξ =

g

2m2
eL0t ∂

2

∂v2
e−L0t〈σ(x, v, t)〉ξ

This gives for 〈%(x, v, t)〉ξ

∂

∂t
〈%(x, v, t)〉ξ = −L0〈%(x, v, t)〉ξ +

g

2m2

∂2

∂v2
〈%(x, v, t)〉ξ

and for the probability distribution

∂

∂t
P (x, v, t) = −v ∂

∂x
P (x, v, t)− ∂

∂v

[(
γ

m
v − 1

m
F (x)

)
P (x, v, t)

]
+

g

2m2

∂2

∂v2
P (x, v, t)

(7.5)
This is the Fokker-Planck equation for the probability Pdxdv to find the Brownian

particle in the interval (x, x+ dx, (v, v + dv) at time t.
We can write the Fokker-Planck equation as a continuity equation

∂

∂t
P (x, v, t) = −∇ · j

where ∇ = ex∂/∂x+ ev∂/∂v and the probability current is

j = exvP − ev

[(
γ

m
v − 1

m
F (x)

)
P +

g

2m2

∂

∂v
P

]

7.3 General Fokker-Planck equation

We can obtain the Fokker-Planck equation for a quite general Langevin equation for the
dynamics of a set of fluctuating variables

a = {a1, a2, . . .}

We assume a general friction term νj(a1, a2, . . .) = νj(a) and assume a Gaussian noise
ξj(t) where

〈ξj(t)〉 = 0
〈ξi(t2)ξj(t1)〉 = gijδ(t2 − t1)

The Langevin equation becomes

d
dt
aj(t) = νj(a) + ξj(t)
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or in vector form
d
dt

a(t) = ν(a) + ξ(t)

We ask for the probability distribution

P (a, t) = 〈%(a, t)〉ξ

Again from conservation of probability

∂

∂t
%(a, t) +

∂

∂a
·
[

da

dt
%(a, t)

]
= 0

Usin the Langevin equation to solve for da/dt we find

∂

∂t
%(a, t) =

∂

∂a
· (ν(a)%(a, t))− ∂

∂a
· (ξ(t)%(a, t)) = − [L0 + L1(t)] %(a, t)

where

L0 =
(
∂

∂a
· ν(a)

)
+ ν(a) · ∂

∂a

L1(t) = ξ(t) · ∂
∂a

Following the steps as above we find

∂

∂t
P (a, t) = − ∂

∂a
· (ν(a)P (a, t)) +

1
2
∂

∂a
· g · ∂

∂a
P (a, t) (7.6)

Here g is a tensor with elements gij .

Example

Our previous result can be obtained as a special case of (7.6). The Langevin equations are

dx
dt

= v

dv
dt

= − γ
m
v +

1
m
F (x) +

1
m
ξ(t)

where
〈ξ(t2)ξ(t1)〉 = 2γkBTδ(t2 − t1)

Then

a =
(
x
y

)
, ν(a) =

(
v

− γ
mv + 1

mF (x)

)
ξ(t) =

(
0

1
mξ(t)

)
, g =

(
0 0
0 2γkBT

m2

)
The Fokker-Planck equation becomes

∂

∂t
P (x, v, t) = − ∂

∂x
[vP (x, v, t)]− ∂

∂v

[(
− γ
m
v +

1
m
F (x)

)
P (x, v, t)

]
+
γkBT

m2

∂2

∂v2
P (x, v, t)


