Chapter 7

Brownian Motion: Fokker-Planck
Equation

The Fokker-Planck equation is the equation governing the time evolution of the probability
density of the Brownian particla. It is a second order differential equation and is exact
for the case when the noise acting on the Brownian particle is Gaussian white noise. A
general Fokker-Planck equation can be derived from the Chapman-Kolmogorov equation,
but we also like to find the Fokker-Planck equation corresponding to the time dependence
given by a Langevin equation.

The derivation of the Fokker-Planck equation is a two step process. We first derive
the equation of motion for the probability density 4/varrho(x, v, t)4 to find the Brownian
particle in the interval (x,z+dx) and (v, v+dv) at time ¢ for one realization of the random
force £(t). We then obtain an equation for

P(z,v,t) = (o(x,v,1))¢

i.e. the average of o(x,v,t) over many realizations of the random force. The probability
density P(z,v,t) is the macroscopically observed probability density for the Brownian
particel.

7.1 Probability flow in phase-space

Let us obtain the probability to find the Brownian particle in the interval (z,z + dx and
(v,v 4+ dv) at time ¢. We will consider the space of coordiantes = (z,v). The Brownian
particle is located in the infinitesimal ara dezdv with probablity o(z, v, t)dxdv. The velocity
of the particle at point (z,v) is given by £ = (&,0) and the current density is xp. Since
the Brownian particle must lie somewhere in the phase-space —00 < & < 00,00 < ¥ < 00

we have the condition
oo o
/ dx/ dvo(z,v,t) =1
— 0o — 0

Let us now consider a finite area, or volume, Vj in this space. Since the Brownian particle
cannot be destroyed a change in the probability contained in V; must be due to a flow of
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probability through the surface Sy surrounding Vy. Thus

d
// dzdvo(z,v,t) ——/ o(z,v,t)z - dS
dt Vo So

We can now use Gauss theorem to change the surface integral into a volume integral.

// da:dv o(z,v,t) // dzdvV - (zo(x,v,t))
Vo Vo

Since Vj is fixed and arbitrary we find the continuity equation

O plav,1) =~V - (ol v,0) = (g0l v, 1) ~ o (vl v,1)  (T.)

This is the continuity equation in phase-space which just state that probability is con-
served.

7.2 Probability flow for Brownian particle

In order to write (7.1) explicitly for a Brownian particle we must know the Langevin
equation governing the evolution of the particle. For a particle moving in the presence of
a potnetial V(x) the Langevin equations are

e
dv 0% 1 1
) I N ) R 2
Py Rty (7.2
where the force F/(z) = —V’(z). Inserting (7.2) into (7.1) gives
d d v 0 1 0
ag(wvvvt) - _% (UQ(JZ’ U7t)) + E% (UQ(ZII,U,t)) - %F(l’)%g(l',v,t)

- 75( ) (:C v t) _LOQ(x7U7t) - Ll(t)zg(w:%t)

where the differential operators Ly and L are defined as

0 0 1 0
Ly = vg-—L—Tvo ot —Pla)

6:Bmm8’u v

1
L, = Eé(t)%

Since &(t) is a stochastic variable the time evolution of ¢ will be different for each realization
of £(t). However when we observe an actual Brownian particle we are observing the average
effect of the random force on it. Therefore we introduce an observable probability density
P(z,v,t) = <€(t)>§

Let

then
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This equation has the formal solution
t
o(t) = exp [—/ dt’V(t')] a(0)
0
which follows since formally
t1
O‘(t) = / dt1V tl) 751 == O‘ / dt1V tl / dtl/ dtQV tl tg) ( )

+ /dtl/tl dty - / Aty V)V (E) .. V(tn 1) (0) +
= Z(nl!) [ /0 dth(tl)]na(O)—exp {— /0 tdt’V(t’)] a(0)

n=0

The third step follows since by changing the order of integration and then varibles

[ [Mawveovis = [ /t:dnme(fz) = [ /tfdhv(“)v(m

so that
t t1 1 t 2
[an [awvieven =5 | [ anvn)
0 0 2 1Jo

/O’fdtl /0“ dt2.../0t" it AV V(1) -V (t) = [/Otdtﬂ/(tl)] (7.3)

then by taking the derivative

d/tdtl /tl dt2~-'/tn+1 dt, V(1) V (t2) ... V(t,)
_ / dts / ® ity / by V)V (E) . V()

_ V(t)n! U dt1V(t1)} :jtml—l)![/otdtlv(tl)rﬂ

By induction it therefore follows that (7.3) holds. Taking the average (---)¢ over the
Gaussian noice £(t) we see that (o(t))¢ is the characteristic function of the random variable
X(t) = ifg dt1V(t1). This must again be a Gaussian variable with (X (¢))¢ = 0 and the

variance is ‘ ¢
1
= 2/ dtl/ dt2<V(t1)V(t2)>
0 0

Since the characteristic function for the Gaussian variable X (¢) is exp (1X (t)) = exp (inx — (X (£)?)/2)

we find
ot =ew (3 [ an [ aeveves) oo (7.4

Also assume that
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This formula is just a special case of a cumulant expansion. The integral in (7.4) becomes

I ! Lot O Lyt oLot 1 O Lyt

- dtl dt2<V(t1)V(t2)>£ = dtl dtg ot — ( ) e T0Me0t2 f(t ) e 0 2>€
2 0 0 ov ov

— / dt, elot1 ~__ 0’ e Lot
2m2 0 902 °

Then

0 g 0% _
8t< o(z,v,t))e = WeLotwe Fol{o (2, v,t))e

This gives for (o(z,v,t))¢

0 g 02

§<Q(l’7 v, t)>§ = _LU<Q($7 v, t)>§ + mw<g($, v, t)>f
and for the probability distribution

2
%P(:ﬂ,v,t) 70% (z,v,t) — % [(;U - ;F(@) P(x,v,t)} + %W%P(x,v,t)
(7.5)
This is the Fokker-Planck equation for the probability Pdzdv to find the Brownian
particle in the interval (x,z + dz, (v,v + dv) at time t.
We can write the Fokker-Planck equation as a continuity equation

0
“p — V-
5 (x,v,t) V-j

where V = e,,0/0z + e,0/0v and the probability current is

j:emvP—eUK”v—lF(x))PJr g ap]

m m 2m2 v

7.3 General Fokker-Planck equation

We can obtain the Fokker-Planck equation for a quite general Langevin equation for the
dynamics of a set of fluctuating variables

a = {al,ag,...}

We assume a general friction term vj(aj,ag,...) = v;(a) and assume a Gaussian noise
&;(t) where

&) =0
(Gi(t2)&(t1)) = gijo(ta — ty)

The Langevin equation becomes



7.3 General Fokker-Planck equation 93

or in vector form

d
Zalt) = v(a) +£(0)

We ask for the probability distribution

P(a,t) = (o(a,t))¢
Again from conservation of probability

0 0

da
a@(ai) + Ja [dtg(a’t)] =0

Usin the Langevin equation to solve for da/dt we find

0 0 0

srelat) = 5 (vl@ela,) - 5 (€0ea ) = ~ (Lo + La(t)] efas 1)

where

0
L) = &) 5
Following the steps as above we find
0 0 10 0

Here g is a tensor with elements g;;.

Example

Our previous result can be obtained as a special case of (7.6). The Langevin equations are

dx
E = v
j—: = Loy %F(x) + %5(7&)
where
(€(t2)€(tr)) = 2vkBT6(t2 — t1)
Then

() (i)

€0 = (260) o= (0 =)

The Fokker-Planck equation becomes

gtP(x,v,t) _ 9 P -2 [(—% + F(:z)) P(z,v, t)] +



